解析几何之直线内容轻轻松松,解析几何之圆大步而行,解析几何之椭圆小小磕绊,解析几何之双曲线……
结合前身原本就学过的算学知识,现如今,余华的学习效率和进度极其客观。
时间不知过去了多久。
窗外寒风呼啸,屋内寒冷无比。
双眼注视着眼前的双曲线题目,余华面容严肃,眉宇微皱,额头渗出一层汗水,再无先前的意气风发,这是一道非常有难度的双曲线题目。
已知双曲线x2/9-y2/16=1的左、右焦点分为别F1F2,若双曲线上一点P使∠F1PF2=90°,则△F1PF的面积是多少。
主要内容是双曲线焦点三角形面积求解,由普林斯顿大学教授为中学生编撰的教材题目,面积公式和原理不难,一进入实战,就很难了。
余华已经算了四遍,桌案上的草稿纸已经堆了十几页,还是没有算出来。
不是算出来的答案不对,而是根本没算下去。
“奇怪,难道是我思路有问题?换个角度求解,似乎可以这样……”余华揉了揉略微肿胀的额头,右手握着铅笔,再度算了起来。
根据双曲线焦点三角形公式S=b2t(θ/2),根据双曲线的定义有:‖PF1|-|PF2‖=6。
两边平方得:|PF1|2+|PF2|2-2|PF1‖PF2|=36。
由勾股定理可知:
∵,|PF1|2+|PF2|2=|F1F2|2=100
∴,|PF1‖PF2|=32
∴,S=1/2(|PF1‖PF2|)=16。
“呼,好像没错,应该就是十六,终于算出来了。”余华放下铅笔,望着密密麻麻的草稿纸,心中终于松了一口气,伸手擦了擦额头冒出的汗水,心中成就感油然而生。
成了。
以前最讨厌和最不喜欢的双曲线焦点三角形,基本掌握了,今天算学教科书进度拉了一大截,可喜可贺。
休息半分钟,余华没有继续动笔学习,他已然从极其专注的忘我状态退了出来,重新看了一眼算学教科书,果不其然,上面一系列知识点全都变得晦涩抽象,一时之间难以理解。
再看一眼草稿纸,上面写着的双曲线焦点三角形题目,变得晦涩难懂起来,整个计算公式和过程令余华看的眼花缭乱,与半分钟之前如有神助的状态相差甚远。
诶,面积是多少?
等等,左右焦点F1和F2怎么算来着?
看了两眼,余华感觉脑袋有些混乱,丢掉铅笔,选择游戏,抬手看了看手表,深夜十一点半,已经过去四个小时,心中思考:“我已经到达极限,脑袋反应迟钝,还有一种缺氧的感觉,学习时间四个小时,加上今天上午学习的两个小时,总共六个小时。”
六个小时。
这是余华测出来的大概数据。
经过昨天到现在的学习,余华发现学习时的那种忘我状态,在大脑正常的时候就会出现,这种状态之中,他感觉自己仿佛掌握一切,置身知识构成的世界,享受来自于知识的洗礼与灌输,各种灵感不断冒出,可以让他感受到数学的快乐。
但随着大脑渐渐使用过度,产生疲倦,直至缺氧到达极限,自己就会从这种状态里退出来。
这时候,数学的快乐,一瞬间就会扭转为来自数学的折磨。
什么快乐和舒服?
一边去。
经过今晚的测试,一天时间,这种忘我状态大概能维持六个小时左右。